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Abstract In this paper we used the method of parabola approximation to study some

nonlinear differential equations. We derive exact, explicit solutions to the parabolic equations

and use this analytical results in the numerical computations for the general equations. We

then draw the comparison of between the solutions of original and approximated equations.

Moreover, we apply such method to the population growth problem. The error of the difference

between the solutions of the differential equations and the numerical results caused by the

discrete approximations is reasonable.

1 Introduction

Consider the general differential equations

du

dt
= f (t, u) , u (0) = u0.

The parabola approximation method is to approximate the function f (t, u)
through the second-order Taylor expansion.

By the Taylor’s theory

f (t, u) ∼
∞
∑

n=0

1

n!

(

∂

∂t
t+

∂

∂u
u

)n

f
∣

∣

t=t0,u=u0
(t, u)
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where
(

∂
∂t
t+ ∂

∂u
u
)n

f |t=t0,u=u0
(t, u) denotes the binomial expansion at t = t0,

u = u0,
n
∑

k=0

∂nf (t, u)

∂tk∂un−k
|t=t0,u=u0

(t− t0)
k
(u− u0)

n−k
.

We study the second-order approximation of the problem du
dt

= f (t, u) as the
following approximation problem

dv (t)

dt
= A (v (t)− u0)

2
+B (t) (v (t)− u0) + C (t) , v (t0) = u (t0) ,

where

A = 1
2fuu (t0, u0) , B (t) = ft,u (t0, u0) (t− t0) + fu (t0, u0) ,

C (t) = 1
2ftt (t0, u0) (t− t0)

2
+ ft (t0, u0) (t− t0) + f (t0, u0) .

To illustrate this, we consider in the following examples the cases of f (t, u)
is f (u) ; and f (x) = sinx, tanx, secx.

Example 1: We consider the problem dv(t)
dt

= sin v, v (0) = v0 having the

solution v (t) = cos−1
(

cos v0+1−(1−cos v0)e
2t

cos v0+1+(1−cos v0)e2t

)

. The associated approximate equa-

tion dv̄(t)
dt

= v̄ (t) − 1
6 v̄ (t)

3
, v̄ (0) = v0, has the solution v̄ (t) =

√
6v0e

t√
6+v2

0(e
2t−1)

.

The graphs of v and v̄ are very closed in the neighborhood of (0.1, 0) = (v0, t0) .
The expansion of these two functions in the neighborhood of (0.1, 0) = (v0, t0) ,
are

v (t) =
1

2
π − sin−1 (cos v0) + |sin v0|

(

t+
t2

2
cos v0

)

+O
(

t3
)

,

v̄ (t) = v0 + tv0

(

1− 1

6
v20

)

+ t2v0

(

1

2
− 1

3
v20 +

1

24
v40

)

+O
(

t3
)

;

it is also clear that v and v̄ are very closed for (t, v0) near (0, 0) .

Example 2: We consider the problem dv(t)
dt

= tan v, v (0) = v0, having the

solution 2v (t) = cos−1
(

1− (1− cos 2v0) e
2t
)

. We treat the equation dv̄(t)
dt

=

v̄ (t)+ 1
3 v̄ (t)

3
, v̄ (t) = v0, having the positive solution 2 ln v̄ (t)−ln

(

v̄ (t)
2
+ 3
)

=

2 ln v0 − ln
(

v20 + 3
)

+ 2t. We have seen the graphs of v and v̄ are very closed in
the neighborhood of (0.1, 0) = (v0, t0) , and can see that the expansion of these
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two functions in the neighborhood of (0.1, 0) = (v0, t0) ,

t = − 1
2 ln (1− cos 2v0)− 1.9577 + 9.9666 (v (t)− 0.1)

− 50.167 (v (t)− 0.1)
2
+O

(

(v (t)− 0.1)
3
)

,

t = − ln v0 +
1
2 ln

(

v20 + 3
)

− 2.8536 + 9.9668 (v̄ (t)− 0.1)

− 50.165 (v̄ (t)− 0.1)
2
+ 333.34O (v̄ (t)− 0.1)

3
.

Example 3: We consider the problem dv(t)
dt

= sec v, v (0) = v0,having the

solution sin v (t) = sin v0 + t, v (t) = sin−1 (sin v0 + t) . We treat the equation
dv̄(t)
dt

= 1 + 1
2 v̄ (t)

2
, v̄ (0) = v0, having the solution

v̄ (t) =
√
2 tan

(

tan−1
(

v0√
2

)

+ t√
2

)

.

We have seen the graphs of v and v̄ are very closed in the neighborhood of
(0, 0) = (v0, t0) , and can see that the expansion of these two functions in the
neighborhood of (0, 0) = (v0, t0) ,

v (t) = v0 +
t

cos v0
+ 1

2
sin v0

cos3 v0
t2 +O

(

t3
)

,

v̄ (t) = v0 +
(

1 + 1
2v

2
0

)

t+ v0

4

(

2 + v20
)

t2 +O
(

t3
)

.

In real applications, from the experimental data, the system of t, u (t) and
f (t, u) are usually very dynamic and nonlinear, which make it difficult to un-
derstand the properties of a targetted object. In this article, we try to propose
a computational procedure to estimate the solutions of the population problem.

Our computational procedure depends on the exact solution formula for
the parabolic equations. For this, we will set-up some fundamental lemmas
in Section 2. In Section 3, we study a special model equation for population.
Concluding remarks are given in Section 4.

2 Fundamental lemmas

The following lemmas consider the parabolic differential equation with given
three points values yi at time ti, i = 0, 1, 2,

{

dy(t)
dt

= Ay (t)
2
+By (t) + C,

y (t0) = y0, y (t1) = y1, y (t2) = y2, t0 < t1 < t2,
(2)

Lemma 2.1 The differential equation (2)with y0 ≤ y1 ≤ y2, δ = B2−4AC can
be solved as the following:
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(I − i) for δ > 0,

y (t) = x1 +

√
δ

A

1

1− y0−x2

y0−x1 e(x
2−x1)A(t−t0)

;

(I − ii) for δ = 0,

y (t) = x1 − 1

A

1

t− t0 −A−1 (y0 − x1)
−1 ;

(I − iii) for δ < 0, k =
√
−δ
2A ,

y (t) = − B

2A
+ k tan

(

Ak (t− t0) + tan−1
y (t0) +

B
2A

k

)

.

Proof of lemma 2.1 : (I-i) For δ > 0, dy
dt

= A
(

y − x1
) (

y − x2
)

, we obtain
that

ln

∣

∣

∣

∣

y (t)− x2

y (t)− x1

∣

∣

∣

∣

= ln

∣

∣

∣

∣

y0 − x2

y0 − x1

∣

∣

∣

∣

+
√
δ (t− t0) ;

therefore

y (t) = x1 +
(

x2 − x1
) 1

1− y0−x2

y0−x1 exp
(√

δ (t− t0)
) .

(I-ii) For δ = 0, dy
dt

= A
(

y − x1
)2
, we have 1

y(t)−x1 = 1
y0−x1 − A (t− t0) ;

therefore

y (t) = x1 +
1

1
y0−x1 −A (t− t0)

.

And this solution can be obtained by the limiting processing

lim
x2→x1

yx2 (t) = x1 + lim
x2→x1

1
(

1
y0−x1 −A y0−x2

y0−x1 (t− t0)
)

exp (A (x2 − x1) (t− t0))

= x1 +
1

1
y0−x1 −A (t− t0)

.

(I-iii) For δ < 0, dy
dt

= A
(

y − x1
) (

y − x2
)

, we conclude that

Ak (t− t0) = tan−1
y (t) + B

2A

k
− tan−1

y0 +
B
2A

k
,
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y (t) = − B

2A
+ k tan

(

Ak (t− t0) + tan−1
y0 +

B
2A

k

)

= − B

2A
+

√
−δ
2A

tan

(
√
−δ
2

(t− t0) + tan−1
2Ay0 +B√

−δ

)

.¥

Remark 2.1: This lemma will be used in Section 3 for the computations
of every three population data obtained from the Ministry of Interior Taiwan
between the following periods

(i) For female: 1953− 55, 1957− 57, 1967− 69, 1968− 70, 1972− 74, 1973−
75, 1974− 76, 1986− 88, 1989− 91, 1994− 96, 1998− 00;

(ii) For male: 1953− 55, 1954− 56, 1957− 59, 1958− 60, 1967− 69, 1968−
70, 1972− 74, 1973− 75, 1974− 76, 1975− 77, 1978− 80, 1986− 88, 1987−
89, 1989− 91, 1992− 94, 1994− 96, 1995− 97, 1998− 00, 1999− 01, 02− 04

Lemma 2.2: The differential equation (2) with y0 ≤ y2 ≤ y1 can be solved
as the following

(II − i) for δ > 0,

y (t) = x1 +

√
δ

A

1

1− y0−x2

y0−x1 e(x
2−x1)A(t−t0)

for t ∈ [t0, t1] ;

y (t) = x1 +

√
δ

A

1

1− y1−x2

y1−x1 e−(x
2−x1)A(t−t1)

for t ∈ [t1, t2] ;

(II − ii) for δ = 0,

y (t) = x1 − 1
A

1
t−t0−A−1(y0−x1)−1 for t ∈ [t0, t1] ,

y (t) = x1 + 1
A

1
(t−t1)+A−1(y1−x1)−1 for t ∈ [t1, t2] ;

(II − iii) for B2 − 4AC < 0, k =
√
−δ
2A ,

y (t) = − B

2A
+ k tan

(

Ak (t− t0) + tan−1
y (t0) +

B
2A

k

)

for t ∈ [t0, t1] ,

y (t) = − B

2A
+ k tan

(

−Ak (t− t1) + tan−1
y1 +

B
2A

k

)

for t ∈ [t1, t2] .

Proof of lemma 2.2: (II-i) For δ > 0, dy
dt

= A
(

y − x1
) (

y − x2
)

, then we
have for t ∈ [t0, t1] ,
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y (t) = x1 +
(

x2 − x1
) 1

1− y0−x2

y0−x1 exp
(√

δ (t− t0)
) .

Also we obtain

y1 = x1 +
(

x2 − x1
) 1

1− y0−x2

y0−x1 exp
(√

δ (t1 − t0)
) ,

t1 = t0 +
1√
δ
ln

(

y1 − x2

y1 − x1
y0 − x1

y0 − x2

)

.

For t ∈ [t1, t2] , we obtain that

y (t)− x2

y (t)− x1
=

y1 − x2

y1 − x1
e−
√
δ(t−t1);

therefore

y (t) = x1 +
(

x2 − x1
) 1

1− y1−x2

y1−x1 exp
(

−
√
δ (t− t1)

) .

Also,

y2 − x1

x2 − x1
=

1

1− y1−x2

y1−x1 exp
(

−
√
δ (t2 − t1)

) ,

t2 = t1 −
1√
δ
ln

(

y2 − x2

y2 − x1
y1 − x1

y1 − x2

)

.

(II-ii) For δ = 0, t ∈ [t0, t1] ,
dy
dt

= A
(

y − x1
)2
, then we get that

y (t) = x1 +
y0 − x1

1−A (y0 − x1) (t− t0)
.

Also we have

1

y1 − x1
=

1

y0 − x1
−A (t1 − t0) , t1 = t0 +

y1 − y0
A (y1 − x1) (y0 − x1)

.

For t ∈ [t1, t2] ,

1

y (t)− x1
=

1

y1 − x1
+A (t− t1) , y (t) = x1 +

1
1

y1−x1 +A (t− t1)
.

therefore

y2 = x1 +
1

1
y1−x1 +A (t2 − t1)

, t2 = t1 +
y1 − y2

A (y2 − x1) (y1 − x1)
.
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(II-iii) For δ < 0, t ∈ [t0, t1] , then we conclude that

Ak (t− t0) = tan−1
y (t) + B

2A

k
− tan−1

y (t0) +
B
2A

k
,

y (t) = − B

2A
+

√
−δ
2A

tan

(
√
−δ
2

(t− t0) + tan−1
2Ay (t0) +B√

−δ

)

.

And

t1 = t0 +
2√
−δ

(

tan−1
2Ay1 +B√

−δ
− tan−1

2Ay0 +B√
−δ

)

,

y1 = − B

2A
+

√
−δ
2A

tan

(
√
−δ
2

(t1 − t0) + tan−1
2Ay0 +B√

−δ

)

.

For t ∈ [t1, t2] , then

∫ y(t)

y(t1)

1
(

r + B
2A

)2
+ k2

dr = −A (t− t1) ,

−Ak (t− t1) = tan−1
y (t) + B

2A

k
− tan−1

y1 +
B
2A

k
;

therefore

y (t) = − B

2A
+

√
−δ
2A

tan

(

−
√
−δ
2

(t− t1) + tan−1
2Ay1 +B√

−δ

)

.

Also

t2 = t1 −
2√
−δ

(

tan−1
2Ay2 +B√

−δ
− tan−1

2Ay1 +B√
−δ

)

,

y2 = − B

2A
+

√
−δ
2A

tan

(

−
√
−δ
2

(t2 − t1) + tan−1
2Ay1 +B√

−δ

)

.¥

Remark 2.2: This lemma will be used for the computation of every three
population data obtained from the Ministry of Interior Taiwan between the
following periods

(i) For female: 1958− 60, 1961− 63, 1975− 77, 1978− 80, 1987− 89, 1992−
94, 1995− 97, 1999− 01, 02− 04.

(ii) For male: 1954− 56, 1958− 60, 1968− 70, 1975− 77, 1978− 80, 1987−
89, 1992− 94, 1995− 97, 1999− 01, 02− 04.

Similar to the above proof of Lemma 2.2 we can obtain the following Lemmas;
we omit the similar arguments for their proofs.
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Lemma 2.3: The differential equation (2) with y1 ≤ y2 ≤ y0 can be solved
as the following

(III − i) for δ > 0,

y (t) = x1 +

√
δ

A

1

1− y0−x2

y0−x1 e−(x
2−x1)A(t−t0)

for t ∈ [t0, t1] ;

y (t) = x1 +

√
δ

A

1

1− y1−x2

y1−x1 e(x
2−x1)A(t−t1)

for t ∈ [t1, t2] ;

(III − ii) for δ = 0,

y (t) = x1 +
1

A

1

t− t0 +A−1 (y0 − x1)
−1 for t ∈ [t0, t1] ,

y (t) = x1 − 1

A

1

t− t0 −A−1 (y1 − x1)
−1 for t ∈ [t1, t2] ;

(III − iii) for δ < 0, k =
√
−δ
2A ,

y (t) = − B

2A
+ k tan

(

−Ak (t− t0) + tan−1
y (t0) +

B
2A

k

)

for t ∈ [t0, t1]

y (t) = − B

2A
+ k tan

(

Ak (t− t1) + tan−1
y (t1) +

B
2A

k

)

for t ∈ [t1, t2] .

Remark 2.3: This lemma will be used to compute every three population data
obtained from the Ministry of Interior Taiwan between the following periods

(i) For female: 1952− 54, 1956− 58, 1966− 68, 1971− 73, 1977− 79, 1988−
90, 1991− 93, 1993− 95, 1997− 99, 01− 03.

(ii) For male: 1952− 54, 1956− 58, 1966− 68, 1971− 73, 1977− 79, 1981−
83, 1988− 90, 1991− 93, 1997− 99, 01− 03

Lemma 2.4: The differential equation (2) with y1 ≤ y0 ≤ y2 can be solved
as the following

(IV − i) for δ > 0,

y (t) = x1 +

√
δ

A

1

1− y0−x2

y0−x1 e−(x
2−x1)A(t−t0)

for t ∈ [t0, t1] ;

y (t) = x1 +

√
δ

A

1

1− y1−x2

y1−x1 e(x
2−x1)A(t−t1)

for t ∈ [t1, t2] ;

8



(IV − ii) for δ = 0,

y (t) = x1 +
1

A

1

t− t0 +A−1 (y0 − x1)
−1 for t ∈ [t0, t1] ,

y (t) = x1 − 1

A

1

t− t1 −A−1 (y1 − x1)
−1 for t ∈ [t1, t2] ;

(IV − iii) for δ < 0, k =
√
−δ
2A ,

y (t) = − B

2A
+ k tan

(

−Ak (t− t0) + tan−1
y (t0) +

B
2A

k

)

for t ∈ [t0, t1] ,

y (t) = − B

2A
+ k tan

(

Ak (t− t1) + tan−1
y (t1) +

B
2A

k

)

for t ∈ [t1, t2] .

Remark 2.4: This lemma will be used for computing every three popula-
tion data obtained from the Ministry of Interior Taiwan between the following
periods

(i) For female: 1964− 66, 1985− 87, 03− 05.

(ii) For male: 1964− 66, 1985− 87, 1993− 95, 03− 05.

Lemma 2.5: The differential equation (2) with y2 ≤ y1 ≤ y0 can be solved
as the following

(V − i) for δ > 0,

y (t) = x1 +

√
δ

A

1

1− y0−x2

y0−x1 e−(x
2−x1)A(t−t0)

;

(V − ii) for δ = 0,

y (t) = x1 +
1

A

1

t− t0 +A−1 (y0 − x1)
−1 ;

(V − iii) for δ < 0, k =
√
−δ
2A ,

y (t) = − B

2A
+ k tan

(

−Ak (t− t0) + tan−1
y (t0) +

B
2A

k

)

.

Remark 2.5: This lemma will be used for the computation of every three
population data obtained from the Ministry of Interior Taiwan between the
following periods

(i) For female: 1955− 57, 1959− 61, 1962− 64, 1963− 65, 1970− 72, 1976−
78, 1979− 81, 1980− 82, 1981− 83, 1982− 84, 1983− 85, 84− 86,
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96− 98, 00− 02.

(ii) For male: 1955−57, 59−61, 60−62, 61−63, 62−64, 63−65, 70−72, 76−
78, 79− 81, 80− 82, 82− 84, 83− 85, 84− 86, 96− 98, 00− 02.

Lemma 2.6: The differential equation (2) with y2 ≤ y0 ≤ y1 can be solved
as the following

(V I − i) for δ > 0,

y (t) = x1 +

√
δ

A

1

1− y0−x2

y0−x1 e(x
2−x1)A(t−t0)

for t ∈ [t0, t1] ;

y (t) = x1 +

√
δ

A

1

1− y1−x2

y1−x1 e−(x
2−x1)A(t−t1)

for t ∈ [t1, t2] ;

(V I − ii) for δ = 0,

y (t) = x1 − 1

A

1

t− t0 −A−1 (y0 − x1)
−1 for t ∈ [t0, t1] ,

y (t) = x1 +
1

A

1

t− t0 +A−1 (y0 − x1)
−1 for t ∈ [t1, t2] ;

(V I − iii) for δ < 0, k =
√
−δ
2A ,

y (t) = − B

2A
+ k tan

(

Ak (t− t0) + tan−1
y (t0) +

B
2A

k

)

for t ∈ [t0, t1] ,

y (t) = − B

2A
+ k tan

(

−Ak (t− t1) + tan−1
y (t1) +

B
2A

k

)

for t ∈ [t1, t2] .

Remark 2.6: This lemma will be used to compute every three population data
obtained from the Ministry of Interior Taiwan between the following periods

(i) For female: 1965− 67, 1969− 71, 1990− 92.

(ii) For male: 1965− 67, 1969− 71, 1990− 92.

In the next section we want to discuss some models using the Parabola
method.

As mentioned at the beginning, we approximate the differential equation
du
dt

= f (t, u) by the following equation

dv (t)

dt
= A (v (t)− u0)

2
+B (t) (v (t)− u0) + C (t) , v (t0) = u (t0) ,

A = 1
2fuu (t0, u0) , B (t) = ft,u (t0, u0) (t− t0) + fu (t0, u0) ,

C (t) = 1
2ftt (t0, u0) (t− t0)

2
+ ft (t0, u0) (t− t0) + f (t0, u0) .
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3 Special Population Model

We denote by:

b(t) = t− th year birth population,

db(t)
dt

/b (t) := birth rate = bir(t),

dbir(t)/dt := birth speed-up.

For convenience, we denote dbir (t) /dt by dbir (t) in graph.Using the parabolic
approximation curve partition scoring we will study the population growth prob-
lem from 1952 to 2005 in Taiwan and obtain some properties on the birth rate,
population and a model between Birth rate and the Population.

From the population data obtained from the Ministry of Interior Taiwan and
through the following substitution

db (t)

dt
:= b (t+ 1)− b (t) ,

dbir (t) :=
dbir (t)

dt
= bir (t+ 1)− bir (t)

=
db (t+ 1)

dt
/b (t+ 1)− db (t)

dt
/b (t)

=
b (t+ 2)− b (t+ 1)

b (t+ 1)
− b (t+ 1)− b (t)

b (t)
,

we can make the following graphs through plotting by using Maple

Figure 1: Graph of dbir(t)-bir(t)-1

Consider the relation between dbir(t)
dt

and bir(t) for bir (t) lies on [−0.12,−0.05]
the above graph can be shown as

11



Figure 2: Graph of dbir(t)-bir(t)-2

We think that there should exist some reasonable reglues in such a so-
cial sciences and we introduce the method proposed in section 3 a quadratic
model to consist with the Graph of dbir(t)-bir(t)-2 given above and every three-
pointwisely divide the graph dbir(t)-bir(t)-1 into several subgraphs as follows

for v (t) = bir (t) and a (t) = dv(t)
dt

,

a (t) =
dv (t)

dt
= Ajv (t)

2
+Bjv (t) + Cj for v (t) ∈ Ij

where Aj , Bj , Cj , j = 0, 1, · · · , 15 are constants and I0 = [−0.12,−0.07] ,
I1 = [−0.072,−0.06] , I2 = [−0.066,−0.052] , I3 = [−0.048,−0.042] ,
I4 = [−0.04,−0.025] , I5 = [−0.0225,−0.02] , I6 = [−0.02,−0.01] ,
I7 = [−0.013,−0.015] , I8 = [−0.015, 0] , I9 = [0, 0.0016] , I10 = [0.0016, 0.005] ,
I11 = [0.005, 0.0133] , I12 = [0.0133, 0.0166] , I13 = [0.0166, 0.02] , I14 = [0.02, 0.03] ,
I15 = [0.03, 0.04] . That is,

a (t) =















A0v (t)
2
+B0v (t) + C0 for v (t) ∈ [−0.12,−0.07] ,

A1v (t)
2
+B1v (t) + C1 for v (t) ∈ [−0.072,−0.06] ,

A2v (t)
2
+B2v (t) + C2 for v (t) ∈ [−0.066,−0.052] ,

(3.1)

a (t) =















































A3v (t)
2
+B3v (t) + C3 for v (t) ∈ [−0.048,−0.042] ,

A4v (t)
2
+B4v (t) + C4 for v (t) ∈ [−0.04,−0.025] ,

A5v (t)
2
+B5v (t) + C5 for v (t) ∈ [−0.0225,−0.02] ,

A6v (t)
2
+B6v (t) + C6 for v (t) ∈ [−0.02,−0.01] ,

A7v (t)
2
+B7v (t) + C7 for v (t) ∈ [−0.013,−0.015] ,

A8v (t)
2
+B8v (t) + C8 for v (t) ∈ [−0.015, 0] ,

(3.2)
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a (t) =



























































A9v (t)
2
+B9v (t) + C9 for v (t) ∈ [0, 0.0016] ,

A10v (t)
2
+B10v (t) + C10 for v (t) ∈ [0.0016, 0.005] ,

A11v (t)
2
+B11v (t) + C11 for v (t) ∈ [0.005, 0.0133] ,

A12v (t)
2
+B12v (t) + C12 for v (t) ∈ [0.0133, 0.0166] ,

A13v (t)
2
+B13v (t) + C13 for v (t) ∈ [0.0166, 0.02] ,

A14v (t)
2
+B14v (t) + C14 for v (t) ∈ [0.02, 0.03] ,

A15v (t)
2
+B15v (t) + C15 for v (t) ∈ [0.03, 0.04] .

(4.3)

Where Aj , Bj , Cj , j = 0, 1, · · · , 15 are constants. From the above equations we
propose a rough approximate model as the following simple continuous type

dv (t)

dt
= a (t) = A (t) v (t)

2
+B (t) v (t) + C (t) , v (t0) = v0, (3.4)

v (t) = db(t)
dt

/b (t) , b (t0) = b0, b (t1) = b1, v (t1) = v1, b (t2) = b2, v (t2) = v2,

where b(t) = t − th year birth population, v (t) := bir (t) birth increasing rate
, dbir(t)/dt := birth speed-up. The existence of solution of (3.4) can be got by
the standard arguments.

To study the property of birth population we use the lemmas 2.1 ∼ 2.6 in

section 2 to solve the function v (t) = bir (t) = db(t)
dt

/b (t) in those small time
intervals and obtain the population function b (t) ( named ”Estimated number”
for forward difference method and ”theoretical computational results”for back-
ward difference method) by taking integration on v (t) with respect to t, then
take the square mean every three points except the first, second, last two and
last (2003) years and than we obtain the results through using the forward differ-

ence method, according to the official Annals db(t)
dt

is instated by b (t+ 1)−b (t) ,
we obtain the result as shown below

Figure 3:
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with errors

1

54

54
∑

i=1

∣

∣

∣

∣

Bi (t)− bi (t)

bi (t)

∣

∣

∣

∣

∼ 0.04266164 ∼ 4.3%,

1

54

√

∑

(

Bi (t)− bi (t)

bi (t)

)2

∼ 0.007299726 ∼ 0.73%.

Through the backward difference method, according to the official Annals
db(t)
dt

is instated by b (t)− b (t− 1) , and as the same above computation method
we obtain the graph as below

Figure 4:

Figure 5:
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where the number 0 in x- axis represents the year 1952,with errors of case 1

1

54

54
∑

i=1

∣

∣

∣

∣

∣

b̂i (t)− bi (t)

bi (t)

∣

∣

∣

∣

∣

∼ 6.5837381846382%,

1

54

√

√

√

√

∑

(

b̂i (t)− bi (t)

bi (t)

)2

∼ 0.0422277256212%

4 Conclusions

We compare these two methods – forward and backward differences– together
and it show the results that If we could delete the problematic four data caused
by some unregulated statistical methods on population, then through the for-
ward method we can obtain better estimate with errors 4.27% and 0.73% in the
sense of mean and square mean respectively; and 6.58% and 0.042% in the same
situation through the backward difference method.

There were historical survey on the related topics, for example, Lee-Carter
model for the rate of Mortality, APC model for ,...etc.

These errors result from

(i) the computational method and
(ii) the large disparity between the difference equation and differential equa-

tion when the dynamics and nonlinearity are strong.

We plan to establish new methodology to deal such nonlinear problem in the
future.

The problem (3.4) for population can not be solved easily, and from the
experimental point of view (at least from the data at Ministry of Interior Taiwan)

A (t) ∼ a1,it
2+b1,it+c1,i , B (t) ∼ a2,it

2+b2,it+c2,i, C (t) ∼ a3,it
2+b3,it+c3,i,

for t ∈ Ji, Ji are some time-intervals and aj,ibj,i, cj,i are constants we will
compute these constants later. We have tried to use our methods applied in
[1 ∼ 10] to solve this equation (3.4) , but till now do not yet have definite results.
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